
CS111 Computer Programming

Department of Computer Science
Wellesley College

Higher-Order List Operations

Overview

21-2

Today we will see how so-called higher-order list
operations capture list-manipulation patterns.

Higher-order list operations may be much simpler
than loops at performing many list manipulation
tasks.

The map function captures the mapping
pattern

21-3

Previously, we saw examples of the list mapping
pattern, in which the output list is the same length
as the input list, and each element of the output list
is the result of applying some function to the
corresponding element of the input list.

mapDouble([8, 3, 6, 7, 2, 4])

*2 *2 *2 *2 *2 *2

[16, 6, 13, 14, 4, 8]

The map function captures the mapping
pattern

21-4

Previously, we saw examples of the list mapping
pattern, in which the output list is the same length
as the input list, and each element of the output list
is the result of applying some function to the
corresponding element of the input list.

mapPluralize([‘donut’, ‘muffin’, ‘bagel’])

+s +s +s

[‘donuts’, ‘muffins’, ‘bagels’]

The map function captures the mapping
pattern

21-5

Python provides a map function that captures this
pattern. When invoked as map(function,
inlist), it returns a new output list that’s the
same length as inlist in which every element is the
result of applying function to the corresponding
element of inlist.

map(f, [e1, e2, …, en])

f f f

[f(e1), f(e2), …, f(en)]

map examples

21-6

Suppose we define the following functions:

def double(n):

return 2*n

def pluralize(st):

return st+’s’

Then we can use map to apply these functions to
each element of a list:

In [1]: map(double, [8,3,6,7,2,4])

Out[1]: [16, 6, 12, 14, 4, 8]

In [2]: map(pluralize, [‘donut’,‘muffin’,‘bagel’])

Out[2]: [‘donuts’, ‘muffins’, ‘bagels’]

map examples

21-7

Note that the first argument to map in these examples
is a one-argument function. It is just the function itself
and not the result of applying the function to anything.
There’s a big difference between these two situations:

In [1]: map(double, [8,3,6,7,2,4])

Out[1]: [16, 6, 12, 14, 4, 8]

In [2]: map(pluralize, [‘donut’,‘muffin’,‘bagel’])

Out[2]: [‘donuts’, ‘muffins’, ‘bagels’]

In [3]: double # just the function itself

Out[3]: <function __main__.double>

In [4]: double(8) # result of applying function

Out[4]: 16

mapDouble and mapPluralize without loops

21-8

def mapDouble(nums):

return map(double, nums)

def mapPluralize(strings):

return map(pluralize, strings)

In [5]: mapDouble([8,3,6,7,2,4])

Out[5]: [16, 6, 12, 14, 4, 8]

In [6]: mapPpluralize([‘donut’,‘muffin’,‘bagel’])

Out[6]: [‘donuts’, ‘muffins’, ‘bagels’]

Customized map function

21-9

How does map work? To illustrate, we can define our
own version of Python's map function as follows:

def myMap(f, elts):

result = []

for e in elts:

result.append(f(e))

return result

In [7]: myMap(double, [8,3,6,7,2,4])

Out[7]: [16,6,12,14,4,8]

Customized map function

21-10

All myMap does is capture the mapping pattern we've
seen before in one function so that we don't have to
repeat it over and over again. We write a standard
loop that accumulates a list result in myMap exactly
once, and then we never need to write this loop again
for the mapping pattern.

def myMap(f, elts):

result = []

for e in elts:

result.append(f(e))

return result

Customized map function

21-11

The definition of myMap depends critically on being
able to pass a function as a parameter. Not all
programming languages permit this, but Python does.
Functions that take other functions as parameters
or return them as results are called higher-order
functions. Thus, map is an example of a higher-
order list function, i.e., a higher order function that
manipulates lists.

def myMap(f, elts):

result = []

for e in elts:

result.append(f(e))

return result

Exercise

21-12

Using the map function, define a mapSquare
function that takes a list of numbers and returns a
list of its squares:

Using the map function, define a mapUpper function
that takes a list of strings and returns the result of
uppercasing each string. Use the string .upper()
method to uppercase strings.

In [8]: mapSquare([8,3,5])

Out[8]: [64,9,25]

In [9]: mapUpper(['ant','bat','cat'])

Out[9]: ['ANT','BAT','CAT']

Defining local functions to use with map

21-13

In the previous examples, we defined a global
function double to use within the mapDouble
function definition. It would be nicer to define
everything within one function, and Python lets us do
this by defining the double function inside the
mapDouble function:

def mapDouble(nums):

Locally define double function within mapDouble.

Can only be used inside mapDouble and not outside

def double(n):

return 2*n

return map(double, nums)

Defining local functions to use with map

21-14

Sometimes we must define the function used by map
locally within another function because it needs to
refer to a parameter or some other piece of
information that is local to the enclosing function.

def mapScale(factor,nums):

Can't define this outside of mapScale, because

it needs to refer to parameter named "factor"

def scale(n):

return factor*n

return map(scale, nums)

In [10]: mapScale(3, [8,3,6,7,2,4])

Out[10]: [24,9,18,21,6,12]

In [11]: mapScale(10, [8,3,6,7,2,4])

Out[11]: [80,30,60,70,20,40]

Defining local functions to use with map

21-15

Sometimes we must define the function used by map
locally within another function because it needs to
refer to a parameter or some other piece of
information that is local to the enclosing function.

def mapPrefixes(string):

Can't define this outside of mapPrefixes, because

it needs to refer to parameter named "string"

def prefix(i):

return string[:i+1]

return map(prefix, range(len(string)))

In [12]: mapPrefixes('program')

Out[12]: ['p','pr','pro','prog','progr','progra','program']

Exercise

21-16

Using the map function, define a mapPreConcat
function that takes a string pre and a list of strings
and returns the result of concatenating pre in front
of every string in the list.

In [13]: mapPreConcat('com', ['puter','pile','mute'])

Out[13]: ['computer','compile','commute']

