Dynamic Programing and Heuristics

Module Overview

In the previous two modules you learned more about scoring methods, patterns, and PSSMs
associated with alignments, but so far you haven’t seen how this translates to the programs
that will almost certainly be frequently used tools in your bioinformatics toolkit — BLAST and
FASTA. BLAST and FASTA are alignment programs that use heuristics. To understand
alignment heuristics, you first need to understand the dynamic programming methods on
which they are based. The first dynamic programming algorithm applied to sequence analysis
was Needleman-Wunsch, used for global sequence alignments. Smith-Waterman modified
and extended this for use in local alignments. Needleman-Wunsch and Smith-Waterman
produce mathematically optimal alignments, but they are too computationally intensive for use
in genome-scale alignments. Heuristics make alignments practical for the vast collections of
sequences available at NCBI and through Next-Generation Sequencing (NGS).

Learning Objectives

Required Reading

Align two short sequences using a dynamic programming algorithm.
Build a BLAST database from a FASTA file

Run BLAST and FASTA alignments from the command line

Parse BLAST and FASTA tabular output and convert to GFF3 format

Understanding Bioinformatics chapters 5 and 6 were required reading in previous modules,
but you may want to review them again before reading the Altschul paper assigned for this
module. It would also be better to read the text within this module to get an overview before
getting into the technical details of the paper. If you are new to reading original scientific
papers they can seem overwhelming at first, but the ability to read, understand, and write
papers like this is an important skill for a bioinformatician.

Paper

Section(s) to Concentrate On

Altschul, S. F., Madden, T. L., Schaffer, A. A.,
Zhang, J., Zhang, Z., Miller, W., & Lipman, D.
J. (1997). Gapped BLAST and PSI-BLAST: a
new generation of protein database search
programs. Nucleic Acids Res, 25(17),
3389-3402.

Refinement of the basic algorithm: The
two-hit method

Sequence weights

BRCT proteins

Optional Reading

This module covers some of the techniques used in CRISPR design. For background on
CRISPR design read the papers listed below. This reading is optional and there are no quiz

questions on these papers. The bioinformatics work for the PNAS paper was a co-op project,
so you may find these papers useful to get a feel for the type of work done on co-op.

e The CRISPR Craze
e Optimized gene editing technology for Drosophila melanogaster using germ
line-specific Cas9

YouTube Playlist

Sequence Analysis

Sequence analysis methods can be categorized as intrinsic or extrinsic, and exact or
heuristic. Intrinsic versus extrinsic differentiates comparison with self from comparison to
others. Exact versus heuristic differentiates algorithms that guarantee maximization of a score
according to a given scoring scheme from those that gain speed using “rules of thumb” at the
risk of missing an optimal alignment. The risk of missing an optimal alignment may sound like
a high price to pay for speed, but this module will show you examples of alignments for which
the determination of an optimal alignment would be computationally intractable.

Intrinsic Sequence Analysis

Intrinsic Sequence Analysis is the evaluation of sequence properties without explicitly
referring to other sequences using a derived formula, sequence or value. Examples include
calculating percent G+C values (DNA), or comparing the sequence against itself for the
presence of direct or inverted repeats. The self-alignment of the BRCAZ2 protein shown in the
dot plot below is an example of intrinsic sequence analysis.

(A) (B)

1 20 40 60 80 100 120 140 160 180 200 220 240 1 20 40 60 80 100 120 140 160 180 200 220 240
1_II||III||III|1_I|III|IIII|II
20— 20—

40— 40—
60— 60—
80— 80—
100— 100 —
120— 120—
140 — 140 —
160— 160 —
180 — 180 —
200— 200—
220— 220—
240 — 240 —
residue number residue number

Understanding Bioinformatics Figure 4.3

https://www.youtube.com/playlist?list=PL_0fmqt5rbgUC7RIN4_Y7QPSpSfaiBMaT

The transmembrane prediction shown below is another example of intrinsic sequence
analysis.

TMHMM posterior probabilities for sequence

1.2
. . . T
1.0 — = — —_— = —
II‘ — r' Y
! | | |]
z
|
g 06 -l
e
o
0.4
0.2 ‘
0 |., .J‘ (L ||' "In. .‘ ||. ..|’ |I. || | Ll I ||
50 100 150 200 250 300
residue number
transmembrane inside outside
Sequence outside 1 38

Sequence TMhelix 39 61
Sequence inside 62 73
Sequence TMhelix 74 96
Sequence outside 97 110
Sequence TMhelix 111 133
Sequence inside 134 152
Sequence TMhelix 153 175
Sequence outside 176 201
Sequence TMhelix 202 224
Sequence inside 225 253
Sequence TMhelix 254 276
Sequence outside 277 285
Sequence TMhelix 286 308
Sequence inside 309 348

Understanding Bioinformatics Figure 11.37

Extrinsic Sequence Analysis

Extrinsic sequence analysis is the evaluation of sequence properties by explicitly comparing
them to other sequences or sets of sequences. Examples of extrinsic analysis include
sequence comparisons using pairwise dot plots, pairwise dynamic (Needleman-Wunsch or
Smith-Waterman), pairwise heuristic (BLAST, BLAT, FASTA), or multiple sequence
alignments to detect homology, insertions or deletions, as well as statistical or phylogenetic
analysis. A common mistake in sequence analysis is to use only one of these approaches.

Combining intrinsic and extrinsic computational approaches can give results neither alone can
approach.

Dynamic Programming versus Heuristics

The two main categories of sequence alignment methods are exact methods, which use
dynamic programming algorithms and approximate methods, which use heuristic algorithms.
Dynamic programming algorithms guarantee a mathematically optimal result with a given
scoring scheme. Dynamic programming algorithms include:

° Needleman-Wunsch (global)
° Smith-Waterman (local)

These algorithms are often used for pairwise alignments, but they are rarely used for multiple
alignments because they become computationally intractable with increasing number and/or
length of sequences.

Heuristic algorithms make some assumptions that hold true most, but not all of the time.
Programs that use heuristic pairwise alignment algorithms include:

° BLAST
° FASTA

All widely used multiple alignment programs use heuristic algorithms, and they include:

ClustalW
Tcoffee
Muscle
MAFFT

Optimal alignments in the mathematical sense provide the best or highest-scoring alignment
for a given set of scoring functions. Optimal alignments in the biological sense provide an
alignment in which each aligned sequence residue descended from the same ancestral
residue, and each aligned sequence residue plays the same functional role for the two
proteins. Finding mathematically optimal alignments is straightforward in concept (whether
computationally feasible or not), but finding biologically optimal alignments (homology) is not.

Graph Theory and Terminology

Sequence alignment methods are often described using graph terminology. A sequence
graph represents residues as edges between nodes. Nodes are also called vertices. Such a
graph can represent a single sequence, or a multi-dimensional comparison between two
sequences. In a multi-dimensional graph, paths through the graph correspond to alignments
of the sequences, with each edge on the path corresponding to a column of the alignment.
The image below shows the alignment of two sequences displayed as a graph. Without a
scoring mechanism you could just connect any combination of vertices and call it an

alignment. The challenge is to find the “best” path through this graph.

%
]
VA

/.

RRRR S
A INNNENINENNNEN N
c NI NN NN NN
$$$KKNNN?@T$%§

i D AN AMAVAVAMAN AV AVAMAVANAY

Diagonal edges correspond to two aligned residues. Horizontal and vertical edges correspond

to a residue in one sequence and a gap in the other (indels). The image below shows indels
(left) and substitutions (right) as graphs.

Edge Weights on Graphs

Edge weights correspond to scores for an aligned residue or gap. A simple version would be
1 for a match, 0 otherwise. The weight of a path is the sum of weights for each edge on the

5

path. The highest weight path corresponds to the highest scoring alignment for that scoring
system. Weights are assigned using a substitution score matrix such as the BLOSUM62
matrix.

Over the course of evolution, some positions have undergone base or amino acid
substitutions as well as insertion/deletion (indel) events. Any measurement of distance or
similarity must therefore be done with respect to the best possible alignment between two
sequences. Because indel events are rare compared to base substitutions, it makes sense to
penalize gaps more heavily than mismatches when calculating scores.

Sequence Comparison Methods

To find the “best” alignment between a query sequence and a target sequence, we need a
method for scoring alignments, and an algorithm for finding the alignment with the best score.
The alignment score is calculated using a substitution matrix and gap penalties. The number
of possible alignments may be astronomical. For example when two sequences 300 residues
long each are compared there are more possible alignments (10%®) than the number of
elementary particles in the universe (~10%°)1. Fortunately there are computer algorithms for
finding the optimal alignment between two sequences that do not require an exhaustive
search of all the possibilities.

Dynamic Programming

Dynamic programming (DP) algorithms are a general class of algorithms typically applied to
optimization problems. For DP to be applicable, an optimization problem must have two key
ingredients:

e Optimal substructure - an optimal solution to the problem contains within it optimal
solutions to subproblems

e Overlapping subproblems - the pieces of the larger problem have a sequential
dependency

For a more detailed explanation of optimal substructure, read
http://en.wikipedia.org/wiki/Optimal_substructure.

Two important dynamic programming algorithms are Needleman-Wunsch (NW), which is
used for global alignments and Smith-Waterman (SW), which is used for local alignments.
Global alignments attempt to align every residue in the sequences, and they are most useful
when the sequences are similar in size. Local alignments find an alignment for parts of the
two strings, and they are most useful for dissimilar sequences that share regions of similarity
or contain similar motifs.

Needleman-Wunsch
The basic steps for a Needleman-Wunsch dynamic programming alignment:

e Start at the top left corner on the graph

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOptimal_substructure&sa=D&sntz=1&usg=AFQjCNH7H1_rG8O1teWEzOPy4PDQ_mX8mw

e Proceed across and down the graph, adding up match scores for every path and
recording in a 2-D array

e Choose the path that gives the best score at the bottom row or right edge

e Trace back through the highest scoring path to obtain the alignment

The images below show all paths scored, as well as the trace-back through the
highest-scoring path for two different scoring methods. Notice the relationship between
horizontal and vertical arrows (indels) and the corresponding text alignment to the right of
each graph. You should be able to write out the text alignment for a short sequence given a
graph representation, and vice versa.

(A) 1 s A L I 6 N E D (B) T"'ISLITT‘
9—»—8-»—16-»—24-»—32-»—40-»—48»—56-»—64-»—72 1SALIGHED
Y N
T -8 1 7= 5mp_23mp 3 {mp_39mp_ 47 = 55mp_(3
4 + NN
H -16 -9 =20 -9=p-17mp-25mp-33 40 -47=p-55
[L 0 TN VO W
I -24 -12 -10 =307 =13mp-21mp-20mp-37mp—45
Bl -:2 -0 -3 -9 B —9 —13 —20mp-28wp-35
N NN ~
L =40 -28 =16 -9 - - =11 -16 -23=p-31
I 3 INESY NSO ~
W -i8 -36 -24 -17 -7 -1 EEENii -19 -26
5‘:5 4‘4 3‘2 2‘5 1‘5 3\1\1» 9 w17
N - - - - - - - - -9 mp-
[Y I § IS
E -64 -52 -40 =33 =23 -17 -9 -1 4 = =4
(A) I S A L I G N E D (B) THIS-LI-NE-
[T 1
> 4 m _Gup_ 2w -20 -2 =28 =32 =36 ——ISALIGNED
N N
T -4 -1 —3mp —7mp_ 11— 15mp_19mp_23mp_27 mp_31
¥ I N ~
H | -8W.-5 -2 -5 -9mp-13mp-17mp-18mp-22mp-26
IS N\
I 12 40 -6 -3 -3 —Swp Omp_13mp_17mp_21
A / IS\ N N
s -16 -8 Omb 400 -5 -5 @ —Smp _gmp_12mb_16
1 { N v N ~
L -20 -12 -4 -1 0 -3 -7= -8 -11=-15
Iw) Y IS N
1 -24 -16 -8 -5 1 4L = Omb —4mp —3mp-12
! S I o+ I N
N -28 -20 -12 -9 -3 0 4 6 2 mp -2
y 3) & $ IS
E -32 -24 -16 -13 -7 -4 0 4 11 = (7

Understanding Bioinformatics Figures 5.09 and 5.11

Needleman-Wunsch Alignment Video
This video steps through a Needleman-Wunsch alignment.

Smith-Waterman

The idea behind the Smith-Waterman algorithm is to modify Needleman-Wunsch to ignore
badly aligning regions. As with NW, Smith-Waterman starts with:

e 2-dimensional matrix with one sequence along the top and the other sequence down
the left side

e All possible alignments are represented by the paths through the matrix

e A diagonal step is an alignment between the query and the subject sequences at that
position

e A vertical step is a gap in the query sequence

e A horizontal step is a gap in the subject sequence

The difference is in the calculations used for initialization and scoring of the matrix:

Modifications to Needleman-Wunsch:

Initialization: F(0,j)=F(i,0)=0

O 1
Iteration: F(i, j) = max Fli-1,j)+ g t
Fli,i-1)+ g

Fli-1,j-1) +s(x, y)

Which Method to Use

It's important to know which type of alignment — global or local — to use in a given situation.
Use a global alignment if:

e You expect, based on some biological information, that your sequences will match
over the entire length

http://www.youtube.com/watch?v=JkpTM-22uBQ

e Your sequences are of similar length

Use local alignment if:
e You expect that only certain parts of two sequences will match, as in the case of
conserved segments that can be found in many different proteins
e Your sequences are very different in length
e You want to search a sequence database

Dynamic Programming Advantages and Disadvantages

The advantage of dynamic programming is that it guarantees the optimal (very best or
highest-scoring) alignment for a given set of scoring functions in a mathematical sense. The
disadvantages are that dynamic programming is slow due to the very large number of
computational steps and the computer memory requirement increases as the square of the
sequence lengths.

Consider a search for best aligning sequences in huge datasets. Would a dynamic
programming algorithm work? Let’s go through some numbers to see. For two sequences of
lengths M and N, the sequence alignment graph has M * N nodes and 3 * M * N edges. The
search time complexity is of the order M * N. The search space complexity to reconstruct the
highest-scoring alignment is of the order M * N.

Using a 1 Kb DNA sequence to search the GenBank nr database (~132 billion nucleotides in
2011) would require calculation of about 300 trillion edge weights (3 x 10'). Even running on
fast clusters, this is far too slow for general use.

Heuristic Algorithms

Heuristic algorithms solve a problem by using rules of thumb to reach a solution. The solution
is not guaranteed to be an optimal solution, but it's generally arrived at far faster than using an
optimal solution approach such as dynamic programming.

In sequence alignments, commonly used heuristic approaches include the FASTA algorithm,
developed by William Pearson in 1988, the BLAST algorithm, developed by Stephen Altschul
in 1990, and the BLAT algorithm, developed by Jim Kent in 2002.

The most widely known and used of these is the BLAST algorithm.

FASTA and BLAST

FASTA and BLAST are word-based sequence alignment methods. Both methods are fast
enough to support searching for alignments of query sequences against entire databases.
The target dataset is pre-indexed to indicate the positions in all dataset sequences that match
each search word above some scoring threshold using a global score matrix such as
BLOSUMG2.

In dynamic programming a lot of time is spent calculating the whole matrix. In most cases this
isn’t necessary, because much of the matrix is far away from the main diagonal. Heuristic

methods only calculate diagonals where the score is above a certain minimum. Note that by
not calculating the entire matrix, you risk missing an optimal alignment.

Short Exact Matches

Smith-Waterman is exact but slow. The best improvement on S-W involves a list of short
sequences that match exactly between the query and subject. The improved process:

e Make a list of the positions of all k-mers or k-tuples in both sequences where k =
length. Length k is set at 2 for protein and 6 for DNA in the FASTA program and 3 for
protein, 11 for DNA in BLAST

e Find all matching k-mers between query and subject, and combine them to form
regions of exact un-gapped matches

FASTA

There are four steps in the FASTA algorithm:

A. Find the best un-gapped perfect matching alignments

B. Rescore the highest-scoring alignments using the PAM250 Matrix

C. Join together some of these high-scoring ungapped alignments using some gaps
D. use the Smith-Waterman dynamic programming method to extend the alignment

10

(A) sequence B —» (B) sequence B —»

. \\\\
NN
N\
N\ . N\
\ \

SN

<«— sequence A
/
O/
o2’
*/
<«— sequence A

(© sequence B — (D) sequence B —

<«— sequence A
<«— sequence A

N\

N\

Understanding Bioinformatics Figure 5.22
BLAST

Of all the sequence alignment algorithms, BLAST is the most frequently used, with about
44,000 citations. BLAST is typically used to compare one query nucleotide/protein sequence
against a database of sequences to uncover similarities and sequence matches. The success
and popularity of BLAST stems from combination of:

° Speed
° Sensitivity
° Statistical assessment of the results

BLAST is a heuristic method to find the high-scoring locally optimal alignments between a
query sequence and a database. The algorithm and family of programs rely on the statistics of

11

gapped and ungapped sequence alignments. The statistics allow the probability of obtaining
an alignment with a particular score to be estimated. BLAST is unlikely to be as sensitive as a
full dynamic programming algorithm, but the underlying statistics provide a direct estimate of
the significance of any match found.

There’s no comparison in terms of speed when compared to dynamic programming. There
are several BLAST programs, and the BLAST program to use in a given situation depends on
the characteristics of the sequences being compared. The table below shows BLAST
programs that are designed for specific types of query and subject sequences.

Program Query Subject
BLASTnN Nucleotide Nucleotide
BLASTp Protein Protein
BLASTx NT translated in all reading Protein
frames
tBLASTN Protein NT database dynamically translated in
all reading frames
tBLASTx NT translated 6 frames NT translated 6 frames

The table below shows two specialized BLAST programs

Program Description
BLAST2seq Compares two protein or two nucleotide sequences
PSI-BLAST Compares a protein sequence to a protein database and performs the

comparison in an iterative fashion in order to detect homologs that are
evolutionarily distant. PSI-BLAST Uses a dynamically calculated scoring
matrix from the actual BLAST search

BLAST Steps

e Apply complexity filtering to mask segments of the query sequence with low
compositional complexity. Filtering can eliminate statistically significant, but biologically
uninteresting hits from the BLAST output.

e Find hits based upon a lookup table

e Extend those hits

Using FASTA and BLAST

Now that you have some understanding of how BLAST and FASTA work, you need to learn
how to use them yourself. Both BLAST and FASTA have web-based versions. The
web-based versions can be useful for occasional one-off searches, but for most bioinformatics
work you’ll need to be able to use the command-line interface to build your own alignment
databases and do your own alignments.

BLAST and FASTA command-line applications are available for your use on the server.

12

Both FASTA and BLAST can also be installed on your computer. FASTA download and
installation instruction are available at:

http://fasta.bioch.virginia.edu/fasta www?2/fasta down.shtml

BLAST download and installation instructions are available at:
http://www.ncbi.nim.nih.gov/books/NBK52640/ (Linux/Mac)
http://www.ncbi.nIm.nih.gov/books/NBK52637/ (Windows)

You aren’t required to install these, this information is just provided for those who prefer to run
it locally.

Using FASTA

To perform a command-line alignment using FASTA, you need two FASTA files — one
containing the query sequences, and the other containing the subject sequences. For
example to align a fasta file containing a collection of gene knockout oligonucleotides to all
Drosophila chromosomes, the command would be:

fasta36 /scratch/Drosophila/oligos.fasta
/scratch/Drosophila/dmel-all-chromosome-r6.02.fasta
1>0ligos _aligned.txt 2>oligos aligned.erré&

In this command,

1>oligos_aligned.txt means redirect STDOUT to oligos_aligned.txt
2>o0ligos_aligned.err means redirect STDERR to oligos_aligned.err
& means run the program in the background

You should use 1>, 2> and & like this for any program that will run for more than a few
minutes. By running programs in this way, you can continue working from the command line
while your program runs in the background. It will continue running even if you logout. You
can see if the program is still running, and how much CPU and memory it's using with the top
command. Type g to exit top.

The first 40 lines of output viewed with head would look like this:
head -n40 oligos_aligned. txt

fasta36 /scratch/Drosophila/oligos.fasta
/scratch/Drosophila/dmel-all-chromosome-r6.02.fasta

FASTA searches a protein or DNA sequence data bank

version 36.3.5e Nov, 2012 (preload8)

Please cite:

W.R. Pearson & D.J. Lipman PNAS (1988) 85:2444-2448

Query: /scratch/Drosophila/oligos.fasta
1>>>CG18721shmi-1 - 21 nt

Library: /scratch/Drosophila/dmel-all-chromosome-r6.02.fasta
143725995 residues in 1870 sequences

Statistics: Expectation n fit: rho(ln(x))= 4.5727+/-0.00044; mu= 10.8954+/- 0.038

mean_var=18.7603+/— 5.947, 0's: 0 Z-trim(99.2): 1 B-trim: 0 in 0/30
Lambda= 0.296111

13

http://www.google.com/url?q=http%3A%2F%2Ffasta.bioch.virginia.edu%2Ffasta_www2%2Ffasta_down.shtml&sa=D&sntz=1&usg=AFQjCNEi7aQp9ONu7dHFA4G2ilDMnLO5tg
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbooks%2FNBK52640%2F&sa=D&sntz=1&usg=AFQjCNGxEx2rhuC4GyMbsxHH8Yyp190Dsw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbooks%2FNBK52637%2F&sa=D&sntz=1&usg=AFQjCNH_mjFPTmnweQJnQ31VY1dKdex6kg

statistics sampled from 1899 (1900) to 1899 sequences
Algorithm: FASTA (3.7 Nov 2010) [optimized]
Parameters: +5/-4 matrix (5:-4), open/ext: -12/-4
ktup: 2, E-join: 0.25 (0.93), E-opt: 0.05 (0.513), width: 16
Scan time: 10.120

The best scores are: opt bits E(2784)
3R type=golden path region; loc=3R:1..32079331 (32079331) [f] 105 40.3 0.0022

>>3R type=golden path region; loc=3R:1..32079331; ID=3R; (32079331 nt)

initn: 105 initl: 105 opt: 105 Z-score: 146.6 bits: 40.3 E(2784): 0.0022
banded Smith-Waterman score: 105; 100.0% identity (100.0% similar) in 21 nt overlap
(1-21:4644365-4644385)

10 20
CG1872 CTGAGCGACGACATTGATGTA
3R CCTGAAGAACTGCAGGATCATGACGAGGATCTGAGCGACGACATTGATGTAGACAGCGAT

4644340 4644350 4644360 4644370 4644380 4644390

3R ATTGAAGATACCCCGGAGCTCAGCGATTAGTTGAGGACCCATTTCATTTTATTTACAAAT
4644400 4644410 4644420 4644430 4644440 4644450

2>>>CG18721shmi-2 - 21 nt
Library: /scratch/Drosophila/dmel-all-chromosome-r6.02.fasta
143725995 residues in 1870 sequences

To run the alignment and produce output in an easy-to-parse tabular format add the -m8
option:

fasta36 -m8 /scratch/Drosophila/oligos.fasta
/scratch/Drosophila/dmel-all-chromosome-r6.02.fasta 1>
oligos aligned.tsv 2>oligos aligned.erré

Try this and view oligos_aligned.tsv using the 1ess command.

Using BLAST

To perform a command-line alignment using BLAST, you need a BLAST database containing
subject sequences, and a FASTA file containing query sequences. Using the FASTA files
from the previous example, the command to build a BLAST database from the FASTA file
would be:

makeblastdb -in /scratch/Drosophila/dmel-all-chromosome-r6.02.fasta
-dbtype nucl -parse segids -title Drosophila -out Drosophila

Building a new DB, current time: 11/23/2014 06:40:25
New DB name: Drosophila

New DB title: Drosophila

Sequence type: Nucleotide

Keep Linkouts: T

Keep MBits: T

14

Maximum file size: 1000000000B
Adding sequences from FASTA; added 1870 sequences in 5.68065 seconds.

To see the files created by makeblastdb, run the 1s command:
ls -1trh

To run the alignment:
blastn -task blastn -db Drosophila -query
/scratch/Drosophila/oligos.fasta 1>oligo blast.txt 2>oligo blast.errs

To view the first 40 lines of output:
head -n40 oligo blast.txt

To run the alignment and produce tabular output add -out fmt 6 and change the output
filename to oligo blast.tsv:

blastn -task blastn -db Drosophila -query
/scratch/Drosophila/oligos.fasta -outfmt 6 1>oligo_blast.tsv
2>o0ligo blast.erré&

Use top to see when the program finishes, and use 1ess to view the output file.
Parsing BLAST Output

There will be more about what all these columns mean in the next module, but for now you
need to know how to parse them using Perl. The Perl program shown below runs BLAST and
parses the output in a single step.

#!/usr/bin/perl

use warnings;

use strict;

#Author: C Roesel

#Creation Date: November 15 2013

#This program executes BLAST and parses the output in a single step.
#This can be useful when you will need to convert the BLAST output to
#another format. If for example you expect to produce 20G BLAST
#output, then reformat that output to another 20G file in a different
#format, you avoid having to use 20G disk space for a temporary file.

blastOligos();
sub blastOligos {

#Put my BLAST command and all the params in an array. This could be created as
#a single string, but an array makes it easier to see the individual

#parameters.
my @commandAndParams = (
'blastn', '-task blastn',

'-db Drosophila',
'-query /scratch/Drosophila/oligos.fasta',
'-outfmt 6'
)
#Print the BLAST command for debugging purposes.
print "@commandAndParams\n";
#Run the BLAST command and get the output as a filehandle named BLAST.

15

open (BLAST, "@commandAndParams |");
#Process the BLAST output line-by-line using the filehandle BLAST.
while (<BLAST>) {
#Get rid of end-of-line characters.
chomp;
#Assign the line of output from the default variable $ to the meaningfully
#named variable blastOutputLine.
my $blastOutputLine = S ;
#If the output line isn't a comment line
if (S$blastOutputLine !~ /~#/) {
#Split the output line using the tab as separator.
my @blastColumns = split ("\t",$blastOutputLine) ;
#Assign the column positions to meaningfully named variables.

my SqueryId = S$SblastColumns([0];
my S$chrom = SblastColumns[1];
my $identity = S$blastColumns([2];
my $length = SblastColumns|[3];
my Smismatches = SblastColumns[4];
my $gaps = SblastColumns[5];
my $gStart = S$blastColumns([6];
my $gEnd = SblastColumns|[7];
my S$sStart = SblastColumns[8];
my $sEnd = SblastColumns[9];

#Print one of the columns to make sure I'm parsing correctly.
print $sStart, "\n";

#TODO

#Do something with the data here.

This video steps through the code line-by-line.

Converting BLAST Output to GFF3 Format

A popular data format for sequence alignments is GFF3. This format is used by several
graphical genome viewers like JBrowse, Gbrowse, and the Integrated Genome Viewer. The
program shown below runs BLAST and converts the output to GFF3 format in a single step.
Part of your final project will be based on the conversion of BLAST output to GFF3 format.

#!/usr/bin/perl
use warnings;
use strict;

#Author: C Roesel
#Creation Date: November 15 2013

#This program executes BLAST and parses the output in a single step.
#This can be useful when you will need to convert the BLAST output to
#another format. If for example you expect to produce 20G BLAST
#output, then reformat that output to another 20G file in a different
#format, you avoid having to use 20G disk space for a temporary file.

unless (open(GFF3, ">", 'oligos.gff3')) {
die $!;
}

blastOligos () ;

16

http://www.youtube.com/watch?v=7iun7xIDsSM

sub blastOligos {

#Put my BLAST command and all the params in an array. This could be created as
#a single string, but an array makes it easier to see the individual
#parameters.
my @commandAndParams = (
'blastn', '-task blastn',
'-db Drosophila',
'-query /scratch/Drosophila/oligos.fasta’',
'-outfmt 6'
)i

#Print the BLAST command for debugging purposes.
print "Q@commandAndParams\n";

#Run the BLAST command and get the output as a filehandle named BLAST.
open (BLAST, "@commandAndParams |");

#Process the BLAST output line-by-line using the filehandle BLAST.
while (<BLAST>) {

#Get rid of end-of-line characters.
chomp;

#Assign the line of output from the default variable $ to the meaningfully
#named variable blastOutputLine.

my $blastOutputLine = S ;

processBlastOutputLine ($blastOutputlLine) ;

sub processBlastOutputLine {
my (SblastOutputLine) = @ ;

#If the output line isn't a comment line
if (SblastOutputLine !~ /*#/) {

#Split the output line using the tab as separator.
my @blastColumns = split("\t", $blastOutputLine);

#Assign the column positions to meaningfully named variables.

my (
SqueryId, $chrom, $identity, $length, S$mismatches,
Sgaps, SgStar, $qEnd, Sstart, $Send
) = @blastColumns;
my $strand = '+';
my $gffStart = 0;
my $gffEnd = 0;
if ($start > Send) {
$strand = '-';
SgffStart = int S$end;
SgffEnd = int $start;
}
else {
SgffStart = int $start;
SgffEnd = int S$end;

}
my @rowArray;
@rowArray = (
$chrom, ".", 'OLIGO', $gffStart, $gffEnd, ".", $strand, ".",

}

"Name=$queryId;Note=Some info on this oligo"
)i
local $, = "\t";
print GFF3 Q@rowArray, "\n";

This video steps through the code line-by-line.

Lab

The purpose of this lab is to build upon your previous program, adding some of the parts you'll
need to complete your final project. You'll get more details on the specifics of the final project
later, but the direction this is heading is to complete a subset of the programming involved in
designing CRISPRs. CRISPRs provide a new way to edit specific locations within a genome.

1.

Make a copy of your k-mer counting program from the previous lab. Call it
uniqueKmersEndingGG.pl.

2. Open a filehandle for writing output to uniqueKmersEndingGG. fasta
3.
4

Change the window length from 15 to 23.

Rather than printing out the k-mers and associated counts, go through your hash of
k-mers and only print out the first 1000 that occur once and end with GG. The reason
for limiting the output to the first 1000 is to keep the time required to run BLAST
manageable.

Put a FASTA header before each k-mer, assigning a number to each based on their
order in the hash. If, for example, you find 3 k-mers that only occur once, print them to
a file like this:

>1

ATGCATGCATGATTCAGTCAAGG

>2

ATTCATGCATGATTCAGTCACGG

>3

ATGCATGCATGATTAAGTCATGG

Create a BLAST database using makeblastdb with
dmel-2L-chromosome-r5.54.fasta as the input and Drosophila2l as the
output and title. Use the makeblastdb -help command to determine the command
and options to use.

BLAST uniqueKmersEndingGG. fasta against the BLAST DB Drosophila2L
using a Perl script that converts the BLAST output lines with 100% identity to GFF3
format. Write the lines with less than 100% identity to of fTarget . txt, without
changing the format of the BLAST output for these lines. Write the GFF3 output to
crispr.gff3.

1 Gribskov, M. R., & Devereux, J. (1991). Sequence analysis primer. New York: New York :
Stockton Press. p.

18

http://www.youtube.com/watch?v=lTjYTDBPkus

