Stacks.notebook

Abstract Data Types
Stacks

Curriculum Connections / Objectives

5.1.6 Describe the characteristics and applications of a stack.
5.1.7 Construct algorithms using the access methods of a stack.

Vermont

Massachusetts
Rhode Island

New Hampshire
Maine

Stacks.notebook

Helpful Vocabulary
Abstract Data Type

A mathematical model or logical description of how we view the data
and the operations that are allowed on it, without regard to how they will be

implemented.

Data Structure
A data structure is a collection of data items, in addition, a number of
operations are provided by the software to manipulate the data structure.

Static Data Structure
Arrays, such as the ones we have seen in java and

that we saw last year with C, are allocated with a fixed and
known storage requirement.

Dynamic Data Structure
Using linked lists to implement a data structure such as a

stack enables the program to allocate memory as needed,
so the maximum number of items in the structure need not

be known.

Stacks.notebook

Compare and contrast dynamic and static data structures.

Dynamic and Static data structures

DYNAMIC :

Memory is allocated to the data
structure dynamically [.e as the
program executes.

Disadvantage: Because the memory
allocation is dynamic, it is possible
for the structure fo 'overflow' should
it exceed its allowed limit. It can also
'underflow' should it become empty.

Advantage: Makes the most efficient
use of memory as the dafa structure
only uses as much memory as it
needs

Disadvantage: Harder to program as
the software needs to keep track of

its size and data item |locations at all

times

Memory is allocated at compile time. Fixed size

Advantage: The memory allocation is fixed and so there will
be no problem with adding and removing data items.

Disadvantage: Can be very inefficient as the memory for the
data structure has been set aside regardless of whether it is
needed or not whilst the program is executing.

Advantage: Easier to program as there is no need to check
on data structure size at any point.

Source: http://www .teach-ict.com

http://www.teach-ict.com/as_as_computing/ocr/h447/f453/3_3_5/data_structures/miniweb/pg3.htm

Stacks.notebook

Characteristics of a stack

The 'STACK' is a Last-In First-Out (LIFO) List.
Which means also that the first item in 1s the last item out. (FILO)
Only the last item in the stack can be accessed directly.

A stack is an ordered collection of items into which new

items may be inserted and from which items may be

deleted at one end, called the top of the stack.
-Aaron M. Tenenbaum and Moche J. Augenstein

Typical operations (methods) to support a stack

push: add an item to the top of the stack

pop: remove the top item of the stack (and return its value)
iIsEmpty: returns the truth if whether the stack contains any items
peek (also returns the top item of the stack, without altering the stack.
known as This is often implemented as a pop followed by a push of

top) the "popped" item.

Stacks.notebook

Example:

Create a stack of state names, inserting the following state names:
Maine New Hampshire Vermont Rhode Island Massachusetts

1) To begin, suppose the stack is currently empty: The first item in the stack will be Maine
push("Maine") The Stack

Maine

2) Next:

push("New Hampshire")

4) Next:
push("Rhode Island")

The Stack

New Hampshire

Maine

The Stack

Rhode Island

Vermont

New Hampshire
Maine

The Stack
3) Next:
push("Vermont") Vermont
New Hampshire
Maine
5) Next: The Stack
push("Massachusetts") Massachuselis I
Rhode Island

New HamEShire

Maine

Stacks.notebook

//File: StateNode.java
//Purpose: Support a linked list of state names

public class StateNode {
public String state;
public StateNode next;

StateNode() {

state = null;
next = null;
}
StateNode(String s) {
state = s;
next = null;
J

public String toString() {
return state;

h

} // end StateNode

The StateNode class contains a typical
structure of a linked list. Namely, there are
fields to contain data - such as

String state;

and there are fields to "link" from one data
item to another. In this case the

StateNode next;

will link from one node to another.

Stacks.notebook

//File: StateNode.java
//Purpose: Support a linked list of state names

public class StateNode {
public String state;
public StateNode next;

StateNode() {

state = null;
next = null;
§
StateNode(String s) {
state = s;
next = null;
§

public String toString() {
return state;

}

} // end StateNode

From the StateNode class we can implement a
stack using linked lists. Suppose we define

a class called StateStack which implements

a stack using nodes of class StateNode:

public class StateStack {

private StateNode stack; // this is the top

// of the stack
StateStack() {

stack = null;

}

/lpush : Add a new node to the stack

public void push(String s) {
StateNode newState = new StateNode(s);
newState.next = stack;
stack = newState;

b

Stacks.notebook

//File: StateStack
//Purpose: Implement a stack of StateNodes
// using a linked list

public class StateStack {
private StateNode stack;

StateStack () {
stack = null;

}

// let someone test to see if the stack is empty
public boolean isEmpty () {
return (stack == null);

}

//pop : return the top node of the stack, and remove the top node
// from the stack.
public StateNode pop () {

StateNode t = stack;

if (stack != null) stack = stack.next;

return t;

}

//push : Add a new node to the stack

public void push(String s) {
StateNode newState = new StateNode(s);
newState.next = stack;
stack = newState;

}

//peek : return the top node of the stack.
public StateNode peek () {
return stack;

}

public void printStates () {
StateNode tPtr = stack;
while (tPtr != null) {
System.out.println (tPtr.toString());
tPtr = tPtr.next;
}
} // end printStates

} // end StateStack

Stacks.notebook

/IFile: States

/[Purpose: Create a stack with 5 state nodes

1 This is a demonstration of using stack operations
public class States {

public static void main(String[] Args) {
StateStack my_stack = new StateStack();

my_stack.push("Maine");
my_stack.push("New Hampshire");
my_stack.push("Vermont");
my_stack.push("Rhode Island");
my_stack.push("Massachusetts");
my_stack.printStates();
System.out.printin("\n----------------- \n");

StateNode j = my_stack.pop();
my_stack.push("Maryland");
my_stack.push("Connecticut");
my_stack.push("Arkansas");
my_stack.push("Delaware");
my_stack.printStates();

System.out.printIn("\n----------------- \n");
for (inti=0;i<4;it+)

j = my_stack.pop();
my_stack.printStates();

} 1/ end main

} // end States

A sample States class to test the functionality of
the StatesStack.

Begin with an empty stack,

add some nodes using push
print out what we have so far,

pop one node,
push several more states

print what we have now,
pop a few nodes off the stack

and print the nodes that remain.

Stacks.notebook

StateNode
String state;
StateNode next;

Trace the stack created by the following sequence:
my_stack.push("Maine");

my_stack.push("New Hampshire");
my_stack.push("Vermont");
my_stack.push("Rhode Island");
my_stack.push("Massachusetts");
my_stack.printStates();

1) my_stack.push("Maine"); 2) my_stack.push("New Hampshire");
my_stack -~
Kv/

my_stack ~\/
. v]
Maine New Hampshire
|
=
Maine

10

Stacks.notebook

StateNode
String state;
StateNode next;

Tracing the stack created by the following sequence:

my_stack.push("Maine");
my_stack.push("New Hampshire");
my_stack.push("Vermont");
my_stack.push("Rhode Island");
my_stack.push("Massachusetts");
my_stack.printStates();

3) my_stack.push("Vermont");

my_stack 1/

Vermont

|

4) my_stack.push("Rhode Island");

my_stack —\/
=

Rhode Tsland

Vermont

New Hampshire

[

Maine

lll.—

New Hampshire

Maine

ll'.—

11

Stacks.notebook

StateNode
String
StateNode

state;

next;

Tracing the stack created by the following sequence:

my_stack.push("Maine");
my_stack.push("New Hampshire");
my_stack.push("Vermont");
my_stack.push("Rhode Island");
my_stack.push("Massachusetts");
my_stack.printStates();

5) my_stack.push("Massachusetts");
my_stack

~

Massachusetts

Rhode Island

Vermont
I —

New Hampshire

Maine

lll.—

6) my_stack.printStates();

Massachusetts
Rhode Island
Vermont

New Hampshire
Maine

12

Stacks.notebook

Exercise

Trace the following program segment that makes calls to a functioning stack:

puklic static woid main(String[] Args)

StateStack my stack = new StateStackl();

my_stack.push ("Maine");
my_stack.push ("New Hampshire");
my_stack.push ("Vermont") ;
my_stack.push ("Bhode Island");
my_stack.push ("Massachusetts") ;
my_stack.printStates();

System.out.println{"\n--————————————- \n");

StateNode j = my_stack.pop();
my_stack.push ("Maryland");
my stack.push ("Connecticut");
my_stack.push ("Arkansas");
my stack.push ("Delaware");
my_stack.printStates();

£ (imt i = 0; 1 < 4; i++)
j = my stack.pop();
my_stack.printStates();

} // end main

System.out.println{"\n---——————————--—- Yo" ;
or

Frogram Output:

Waork area:

13

Stacks.notebook

Srercise Solution /
Program 5Statements Trace: Contents of the Program Output
Stack jbrennan:™/waorkspace $java States

my_stack.push("Maine"); Massachusetts Massachusetts
my _stack.push("New Hampshire"}; Rhode Island Rhode Island
my_stack.push({"Vermont"); Vermont Vermont
my_stack.push("Rhodelsland"); Mew Hampshire Mew Hampshire
my_stack.push("Massachusetts"); Maine Maine
my_stack.printStates(};
System.out printin{"\n————————- n')y | --—————— | -
StateMode j=my_stack.popl); Rhode Island Delaware

Vermont Arkansas

Mew Hampshire Connecticut

Maine Maryland

Rhode Island
YVermont

my__stack.push("Maryland"); Delaware Mew Hampshire
my__stack.push({"Connecticut"}; Arkansas Maine
my _stack.push("Arkansas"}; Connecticut
my_stack.push("Delaware"}; Maryland 000000 | seemeeme-
my_stack.printStates(}; Rhode Island
System.out. printin{"\n-——-————-- \n"); | Vermont Rhode Island

Mew Hampshire Vermont

Maine Mew Hampshire

———————————— Maine
for(inti=0; [<4; i) Rhode Island

] =my_stack.pop(); Vermont

my. stack.printStates(}; Mew Hampshire

Maine |Zoum level. Click to open the Zoom dialog box.

14

	Page 1: Oct 26-5:22 PM
	Page 2: Oct 26-5:42 PM
	Page 3: Oct 26-8:30 PM
	Page 4: Oct 24-1:16 AM
	Page 5: Oct 26-8:40 PM
	Page 6: Oct 26-9:13 PM
	Page 7: Oct 26-9:13 PM
	Page 8: Oct 26-9:20 PM
	Page 9: Oct 26-9:21 PM
	Page 10: Oct 26-6:17 AM
	Page 11: Oct 26-6:17 AM
	Page 12: Oct 26-6:17 AM
	Page 13: Oct 27-5:58 AM
	Page 14: Oct 27-5:58 AM

