6-2 Class Notes Solving Systems Using Substitution

You can solve a system of equations by *substituting* an equivalent expression for one variable.

Problem		
Solve and check the following system:	Solution $x + 2y = 4$	The first equation is easiest to solve in terms of one variable.
x + 2y = 4	x = 4 - 2y	Get x to one side by subtracting 2y.
2x - y = 3	2(4-2y) - y = 3	Substitute $4 - 2y$ for x in the second equation.
	8 - 4y - y = 3	Distribute.
	8 - 5y = 3	Simplify.
	8 - 8 - 5y = 3 - 8	Subtract 8 from both sides.
	-5y = -5	Divide both sides by 25.
	y = 1	You have the solution for y. Solve for x.
	x + 2(1) = 4	Substitute in 1 for y in the first equation.
	x + 2 - 2 = 4 - 2	Subtract 2 from both sides.
I	x = 2	The solution is (2, 1).

Check	Substitute yo	our solution in	to either (o	or both) of	the given	linear equations.
-------	---------------	-----------------	--------------	-------------	-----------	-------------------

x + 2y = 4	
2+2(1) - 4	Substitute (2, 1) into the first equation.
4 = 4	You check the second equation.

CW-6-2-Key.notebook

Solve each system using substitution. Check your answer.

1. $x + y = 3$	2. $x - 3y = -14$
2x - y = 0	x-y = -2
(1, 2)	(4, 6)

Video Solutions are available online

3
$$2x - 2y = 10$$

4. $4x + y = 8$
4. $4x + y = 8$
 $x + 2y = 5$
4. $4x + y = 8$
 $x + 2y = 5$

infinitely many solutions $\left(\frac{11}{7}, \frac{12}{7}\right)$

CW-6-2-Key.notebook

Solve each system using substitution. Check your answer.

5.
$$-2x + y = 8$$

 $3x + y = -2$
6. $3x - 4y = 8$
 $2x + y = 9$
(4, 1)

7. $3x + 2y = 25$	8. $6x - 5y = 3$
2x + 3y = -6	x - 9y = 25
	Solve for x in the second
	equation:
	x = 9y + 25
	substitute (9y + 25) for x in
	the first equation:
	6x - 5y = 3
	6(9y + 25) - 5y = 3
	54y + 150 - 5y = 3
	49y = -147
	y = -3
	Use either equation to
	substitute -3 for y, solve for x:
	x - 9y = 25
	x - 9(-3) = 25
	x + 27 = 27
	x = -2
The solution to the system is	The solution to the system is
(472 403)	(-2 -3)
$(1/\frac{1}{5}, -13\frac{1}{5})$	(=,)